Year 10 Higher

 Preparation Maths Booklet

Getting ready for Year 10 Maths

Key steps to success - Complete each task on the following slides reviewing important KS3 content you need to know before starting KS4. These tasks cover; problem-solving, algebra, parallel line laws, money, trigonometry, density, and indices.

How to do it - on paper, in your old book, or on your iPad.
We don't mind how you do it as long as you have a go at each task!

If you are struggling with any of these questions why not go to Corbett maths which has extra videos, worksheets and GCSE questions on every single topic? You can also recap other topics you have done this year in maths or get ahead of the game and learn a new topic!

Warm up - Key words

Hannah Fry is a worldleading mathematician who does a lot of work for the BBC. Why not look up one of her shows to watch!?!

Find the hidden key words in this word search.

Then look up each word on google in a maths context and write down the definition.

For example - For the word the estimation you should google
'what is the definition of estimation in maths'

A	M	A	R	G	A	I	D	N	N	E	V	U	N	Z	E	T	P	1	S	E	E
S	C	0	M	M	0	N	F	A	C	T	0	R	S	T	P	A	B	M	M	S	C
T	R	S	A	G	R	E	A	T	E	R	T	H	A	N	R	R	C	U	N	T	A
R	A	A	A	T	A	I	N	C	J	N	R	F	I	T	M	L	L	E	0	M	E
R	M	0	T	M	D	A	F	1	0	N	M	I	1	L	F	T	M	E	N	O	D
N	\bigcirc	I	T	I	D	D	A	I	S	D	N	T	E	V	I	T	A	G	E	N	R
M	A	E	Y	L	T	1	T	A	T	D	I	1	N	P	E	F	C	H	L	F	C
0	T	N	U	A	E	C	B	1	I	0	C	A	L	S	B	S	N	D	R	A	F
H	Q	Q	N	C	A	M	M	C	N	G	H	1	T	B	R	A	C	K	E	T	S
F	F	A	T	R	P	M	E	1	L	T	C	1	H	E	R	I	T	0	E	R	P
R	E	I	T	P	0	S	N	0	S	A	M	I	V	A	T	I	A	T	T	M	D
A	I	B	A	0	S	G	N	S	T	A	N	B	T	E	N	S	M	S	M	P	A
B	U	B	E	E	I	M	E	I	T	C	T	A	N	0	T	R	T	U	C	\bigcirc	X
S	H	S	R	I	T	L	0	I	G	B	\bigcirc	N	D	F	U	I	0	L	I	G	A
S	N	0	E	P	I	N	0	N	0	I	S	I	V	1	D	W	N	U	1	G	M
R	R	0	R	I	V	N	D	0	H	T	E	M	N	M	U	L	0	C	N	T	N
1	R	I	1	R	E	N	I	L	R	E	B	M	U	N	F	0	W	E	A	D	P
A	M	R	N	M	A	M	R	R	E	S	R	E	\checkmark	N	I	T	P	T	R	S	G
E	L	E	D	T	R	R	E	B	M	U	N	E	R	A	U	Q	S	E	R	M	I
S	H	W	E	0	Y	S	U	T	N	0	I	T	A	M	I	X	0	R	P	P	A
E	M	D	X	E	R	1	S	Q	U	A	R	E	R	0	0	T	T	S	N	\bigcirc	X
A	T	R	N	X	T	E	M	D	E	C	M	U	L	T	I	P	L	E	H	D	C

Addition	Approximation	Bidmas
Brackets	Column Method	Common Factors
Division	Estimation	Greater Than
HCF	Index	Indices
Inverse	LCM	Less Than
Multiple	Multiplication	Negative
Number Line	Partitioning	Positive
Prime	Round	Square Number
Square Root	Subtraction	Venn Diagram

Task 1a - Indices - Watch the video

$$
\begin{array}{ll}
y^{a} \times y^{b}=y^{a+b} & w^{3} \times w^{5}=w^{8} \\
y^{2} \times y^{3} & a^{-2} \times a^{5}=a^{3} \\
2 y^{6} \times 5 y^{4}=
\end{array}
$$

Task 1b - Indices

The Mystery of Roger's Fedora

It's the night before the Wimbledon final and Roger, the favourite for the title, has lost his lucky fedora!

He left it in his locker, which he made sure he locked carefully before he went back to his hotel. Somebody had clearly broken into it to steal the treasured hat!
He suspects it might be his opponent, Nohat Djokovic, who has taken it; however, a police search found nothing. It must be somebody else!

Your task is to help Roger find his fedora and ensure the culprit is caught.

Evaluate each part to find what was used to break into Roger's locker.

Evaluate 5^{2}	Evaluate 4^{3}	Evaluate $\sqrt{16}$
Evaluate $\sqrt{121}$	Evaluate $3^{3}+2^{5}$	Evaluate $(\sqrt{3})^{2}$

Add together all the answers.
If your answer is:

- 159 then the weapon is a bowl of strawberries and cream.
- 166 then the weapon is a shoelace.
- 172 then the weapon is a tennis racket.
- 174 then the weapon is a champagne bottle.

Task 1c - Indices

Simplify each answer to find the name of the criminal.
Each box contains three statements. The criminal made three mistakes. Make sure you correct any mistakes you find!

Task 2a - Parallel Line Laws - Watch the video

example 3
Find a and give a reason for your answer.

$a=$
Reasson:

https://corbettmaths.com/2013/04/04/parallel-lines-angles/

Task 2b - Find the missing angles

(a)

(d)

(b)

(e)

(f)

Task 2b - Find the missing angles

Task 3a - Compound Interest - Watch this video

Task 3b－Compound Interest

Question 1：Paul leaves $£ 4000$ in the bank for two years．
㞗 It earns compound interest of 5\％per year．
Calculate the total amount Paul has in the bank at the end of the two years．

Question 2：The population of birds on an island is estimated to increase by 10% every year．
㽢 The population of birds on the island is 20000.
Calculate an estimate for the population of birds in three years time．

Question 3：The value of a car decreases by 5\％each year．
毘 Sophie bought a car two years ago for $£ 10000$ Work out the value now．

Question 4：Sam invests $£ 1800$ in the bank for four years．
角 It earns compound interest of 4\％each year．

Calculate the total amount Sam has in the bank at the end of four years．

Question 5：

Task 4a - Trigonometry - Watch the video

https://corbettmaths.com/2013/03/30/trigonometry-missing-sides/

Task 4b - Trigonometry
(b)

(c)

(e)

(f)

Task 4c - Trigonometry

The biathlon combines cross-country skiing with rifle shooting.
a. The start of the ski slope is 1650 ft above the end of the slope. The competitors descend the slope at an angle of 43° with the horizontal. Calculate the length of the slope. Give your answer correct to one decimal place.

b. Now find the other missing side.

Task 5a - Algebra Problem Solving

$=2=?$

Hint: start at the top

Task 5b - Algebra Substitution - Watch the video

https://corbettmaths.com/2012/08/20/substitution-into-expressions/

Task 5c - Algebra Substitution

Substitute the values $a=-1, b=-3, c=5$ and $d=0.5$ into each expression. Colour the segment by finding your answer in the key.

Light Blue	5
Yellow	9
Brown	2
Light Green	-1
Dark Green	4

Task 6a - Density - Watch the video

Density

Corbettmouhs
The cylinder below is made from glass. The density of glass is $2.5 \mathrm{~g} / \mathrm{cm}^{3}$
Calculate the mass of the cylinder

$M=0 \times \sqrt{ }$
$=2.5 \times$
$=$
$20 \mathrm{~cm}=9801$
https://corbettmaths.com/2016/06/07/density/

Task 6b - Density

Question 1: Work out the density of each of the following State the units of each answer.
(a) A piece of wood has a mass of 7 g and a volume of $10 \mathrm{~cm}^{3}$
(b) A rod of aluminium has a mass of 575.4 g and a volume of $210 \mathrm{~cm}^{3}$
(c) A piece of nickel has a mass of 3.48 kg and a volume of $400 \mathrm{~cm}^{3}$
(d) An iron statue with volume of $0.05 \mathrm{~m}^{3}$ and a mass of 394 kg
(e) $2.1 \mathrm{~m}^{3}$ of oil with a mass of 1775 kg

Question 2: Work out the mass of each of the following. State the units of each answer.
(a) A statue with a volume of $120 \mathrm{~cm}^{3}$ made from ceramic which has a density of $2 \mathrm{~g} / \mathrm{cm}^{3}$.
(b) A rod with a volume of $50 \mathrm{~cm}^{3}$ made from copper which has a density of $8.9 \mathrm{~g} / \mathrm{cm}^{3}$.
(c) A block with a volume of $1.8 \mathrm{~m}^{3}$ made from silver which has a density of $10490 \mathrm{~kg} / \mathrm{m}^{3}$
(d) A statue with a volume of $3 \mathrm{~m}^{3}$ made from zinc which as a density of $7.14 \mathrm{~g} / \mathrm{cm}^{3}$
(e) $2800 \mathrm{~cm}^{3}$ of butter which has a density of $911 \mathrm{~kg} / \mathrm{m}^{3}$

Question 3

The Maths of Sandcastles Extension

> Density of water $=1 \mathrm{~kg} /$ litre
> Density of sand $=1602 \mathrm{~kg} / \mathrm{m}^{3}$

1. Convert the density of water into $\mathrm{kg} / \mathrm{m}^{3}$.
2. Calculate the volume of the symmetrical sandcastle shown. Give your answer to 3 decimal places with a suitable unit.
3. If the castle is made from a mixture of water and sand in the ratio 1:4, what is its mass? Give your answer to 3 decimal places.
4. Sanjay makes the castle as shown from a mixture of water and sand in the ratio $1: 4$. His friend Burt makes the castle without one of the cylindrical towers from a mixture of water and sand in the ratio $1: 6$. Which castle has the greatest mass?

